Modelado Numérico de comas de polvo cometarias

Romina S. Garcia

XII Taller de Ciencias Planetarias 26/02 - 01/03 de 2024 Río de Janeiro, Brasil

Introducción Planteo y solución **Cometas** ¿Qué se desea calcular y Resumen de qué sabemos de ellos hasta cómo hacemos para ahora. **Resultados** ¿Qué se obtiene?

Modelo

lograrlo?

Modelado del cometa C/2021 A1 (Leonard)

<u>COMETA</u>

<u>COMETA</u>

<u>COMETA</u>

<u>COMETA</u>

<u>COMETA</u>

Si no aparecen eyecciones abruptas de material, el resultado sería una coma esférica y en estado estable. (Combi et al., 2004)

Son comunes los cambios repentinos en el brillo y en la estructura.

17P/Holmes David Jewitt Hawai, Noviembre de 2007

Objetivo

Estudio y caracterización de las propiedades físicas de la coma de polvo cometaria.

Información del núcleo + polvo

Tres diferentes perspectivas:

- → Morfología
- → Fotometría
- Modelado Numérico

Objetivo

Estudio y caracterización de las propiedades físicas de la coma de polvo cometaria.

Información del núcleo + polvo

Tres diferentes perspectivas:

- → Morfología→ Fotometría
- → Modelado Numérico

Modelado 2D

→ Bessel (1836) : primer modelo que se ajusta a observaciones. Existe una fuerza repulsiva que actúa sobre el material.

- → Bessel (1836) : primer modelo que se ajusta a observaciones. Existe una fuerza repulsiva que actúa sobre el material.
- → Bredichin (1885): introduce los conceptos de sindinas y sincronas.

- → Bessel (1836) : primer modelo que se ajusta a observaciones. Existe una fuerza repulsiva que actúa sobre el material.
- → Bredichin (1885): introduce los conceptos de sindinas y sincronas.
- → Arrhenius (1900's): propone la presión de radiación solar como fuerza repulsiva planteada por Bessel.

- → Bessel (1836) : primer modelo que se ajusta a observaciones. Existe una fuerza repulsiva que actúa sobre el material.
- → Bredichin (1885): introduce los conceptos de sindinas y sincronas.
- → Arrhenius (1900's): propone la presión de radiación solar como fuerza repulsiva planteada por Bessel.
- Schwarzschild y Debye establecen que el parámetro β es inversamente proporcional al tamaño de la partícula.

- → Bessel (1836) : primer modelo que se ajusta a observaciones. Existe una fuerza repulsiva que actúa sobre el material.
- → Bredichin (1885): introduce los conceptos de sindinas y sincronas.
- → Arrhenius (1900's): propone la presión de radiación solar como fuerza repulsiva planteada por Bessel.
- Schwarzschild y Debye establecen que el parámetro β es inversamente proporcional al tamaño de la partícula.
- → Finson y Probstein (1968): modelado 2D y posterior asociación de éste a modelos tri-dimensionales más realistas.

Núcleo cometario moviéndose a lo largo de su órbita y eyectando partículas de polvo con velocidad de eyección cero.

C/2011 L4 (PanStarrs) Imagen: Stanislav Korotkiy, Observatorio Ka-Dar. 24/03/2013 17:00 UT Modelo: Romina S. Garcia

Tubo sincrónico/ sindínico cuyo ancho se obtiene al considerar la velocidad de eyección del polvo para el tiempo/tamaño de partícula en cuestión.

Modelo a primer orden

- \rightarrow Kimura and Liu (1977)
- → Fulle (1987, 1989, 2004)
- → Waniak (1994)
- → Lisse et al., 1998
- → Moreno (2009, 2011, 2012) y otros..

- \rightarrow Kimura and Liu (1977)
- → Fulle (1987, 1989, 2004)
- → Waniak (1994)
- → Lisse et al., 1998
- → Moreno (2009, 2011, 2012) y otros..

- \rightarrow Kimura and Liu (1977)
- → Fulle (1987, 1989, 2004)
- → Waniak (1994)
- → Lisse et al., 1998
- → Moreno (2009, 2011, 2012) y otros..
- Monte carlo inverso.
- Velocidad de eyección para cada tamaño de partícula de polvo.
- Consideran emisiones anisotrópicas.
- Uso de métodos numéricos de cálculo.
- Sirven para modelar coma y cola.

Modelo Numérico

Modelo Numérico

1º Resolver numéricamente la ecuación de movimiento de las partículas de polvo.

encontrar la trayectoria que describen una vez que abandonan la superficie del núcleo y se desacoplan del gas.

2° Estimar su contribución al brillo.

Fuerza gravitatoria del Sol	1
Presión de radiación	0,5
Fuerza de Lorentz	2×10^{-2}
Presión en la coma	2×10^{-4}
Efecto Poynting-Robertson	5×10^{-5}
Colisiones con partículas de viento solar	2×10^{-5}
Fuerza gravitatoria del cometa	1×10^{-5}
Fuerza de Coulomb	2×10^{-7}

(Vincent, 2010)

Fuerza gravitatoria del Sol	1
Presión de radiación	0,5
Fuerza de Lorentz	2×10^{-2}
Presión en la coma	2×10^{-4}
Efecto Poynting-Robertson	5×10^{-5}
Colisiones con partículas de viento solar	2×10^{-5}
Fuerza gravitatoria del cometa	1×10^{-5}
Fuerza de Coulomb	2×10^{-7}

(Vincent, 2010)

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

$$\beta = -\frac{F_R}{F_G} = \frac{C_{pr}Q_{pr}}{2\rho_d s} \quad \text{(Finson y Probstein, 1968)}$$

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

$$\beta = -\frac{F_R}{F_G} = \frac{C_{pr}Q_{pr}}{2\rho_d s} \quad \text{(Finson y Probstein, 1968)}$$

$$\vec{F}_{tot} = \vec{F}_G + \vec{F}_R$$

$$\vec{F}_{tot} = -\frac{k^2 \left(1 - \beta\right) M_s m_d}{r^2} \,\hat{r}$$

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

$$\beta = -\frac{F_R}{F_G} = \frac{C_{pr}Q_{pr}}{2\rho_d s} \quad \text{(Finson y Probstein, 1968)}$$

$$\vec{F}_{tot} = \vec{F}_G + \vec{F}_R$$

$$\vec{F}_{tot} = -\frac{k^2 (1 - \beta) M_s m_d}{r^2} \,\hat{r}$$

$$\ddot{\vec{r}} = -\frac{k^2 M_s}{r^2} (1 - \beta)\hat{r}$$

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

$$\beta = -\frac{F_R}{F_G} = \frac{C_{pr}Q_{pr}}{2\rho_d s} \quad \text{(Finson y Probstein, 1968)}$$

$$\vec{F}_{tot} = \vec{F}_G + \vec{F}_R$$

$$\vec{F}_{tot} = -\frac{k^2 \left(1 - \beta\right) M_s m_d}{r^2} \hat{r}$$
$$\ddot{\vec{r}} = -\frac{k^2 M_s}{r^2} (1 - \beta) \hat{r}$$
$$\ddot{\vec{r}}_c = -\frac{k^2 M_s}{r_c^2} \hat{r}_c$$

Presión de radiación

$$\vec{F}_G = -\frac{k^2 M_s m_d}{r^2} \hat{r}$$
$$\vec{F}_R = \frac{S_0 \pi s^2 Q_{pr}}{r^2 c} \hat{r}$$

 $k^2 M_{s}$

-2

$$\beta = -\frac{F_R}{F_G} = \frac{C_{pr}Q_{pr}}{2\rho_d s} \quad \text{(Finson y Probstein, 1968)}$$

 \vec{r}_{c}

$$\vec{F}_{tot} = \vec{F}_G + \vec{F}_R$$

$$\vec{F}_{tot} = -\frac{k^2 (1 - \beta) M_s m_d}{r^2} \hat{r}$$

$$\ddot{\vec{r}} = -\frac{k^2 M_s}{r^2} (1 - \beta)\hat{r}$$

Modelo Numérico: ¿Cómo funciona?

Modelo Numérico: ¿Cómo funciona?

Cómo funciona?

Modelo Numérico: ¿Cómo funciona?

El código ejecuta repetidamente el modelo con diferentes valores iniciales para las variables.

Considera un tamaño de partícula fijo cada vez.

Arma una matriz A

$$\mathbf{A} \cdot \mathbf{F} = \mathbf{I}$$

El código ejecuta repetidamente el modelo con diferentes valores iniciales para las variables.

Considera un tamaño de partícula fijo cada vez.

Arma una matriz A $\label{eq:sistema} SISTEMA\\ \mathbf{A}\cdot\mathbf{F}=\mathbf{I}$ SOBREDIMENSIONADO!!

$$\mathbf{r} = \mathbf{A} \cdot \mathbf{F} - \mathbf{I}$$
$$\|\mathbf{r}\|_{p} = \|\mathbf{A} \cdot \mathbf{F} - \mathbf{I}\|_{p} = min \quad \text{(Branham, 1990)}$$

- Descubrimiento: Enero del 2021, rh = 5 au, V ~ 19 (Leonard et al., 2022)
- Órbita elíptica órbita hiperbólica
- Imágenes en los filtros de banda ancha B, V y R tomadas con el telescopio HSH de 0.6 m en CASLEO para el 21 y 23 de Diciembre de 2021

Parameter	Type of Parameter	Value
Grain density	Fixed	$1000 kg m^{-3}$
Grain refractive index	Fixed	m = 1.88 + 0.71i
Ejection velocity: power index	Fixed	0.5
Size distribution: β_{min} , β_{max}	Fixed	0.01, 1.3
Size distribution: power index	Variable	-3.5
Nucleus rotation period	Fixed	15 hr
Time interval between positions	Variable	0.32 days
Pole position: heliocentric longitude and latitude	Variable	(250°, 10°)
Active areas location: longitude and latitude	Variable	$AA1=(180^\circ,80^\circ)$
		$AA2 = (0^\circ, -10^\circ)$
Integration steps numbers: N_t	Variable	200
Number of ejected particles in each integration step: N_p	Fixed	3000
Reference ejection velocity: v_0	Variable	$500 m s^{-1}$
Cone angle width	Fixed	$AA1 = 80^{\circ}$
		$AA2 = 60^{\circ}$

	Parameter	Type of Parameter	Value
	Grain density	Fixed	$1000 kg m^{-3}$
(Moreno et	Grain refractive index	Fixed	m = 1.88 + 0.71i
400	Ejection velocity: power index	Fixed	0.5
350 -	Size distribution: β_{min} , β_{max}	Fixed	0.01, 1.3
300	Size distribution: power index	Variable	-3.5
250	Nucleus rotation period	Fixed	15 hr
	Time interval between positions	Variable	0.32 <i>days</i>
<u>ă</u> 200 -	Pole position: heliocentric longitude and latitude	Variable	(250°, 10°)
150 -	Active areas location: longitude and latitude	Variable	$AA1=(180^\circ,80^\circ)$
100 -			$AA2=(0^\circ,-10^\circ)$
50	Integration steps numbers: N_t	Variable	200
	Number of ejected particles in each integration step: N_p	Fixed	3000
0 50 100 150 200 250 300 350 400	Reference ejection velocity: v_0	Variable	$500 m s^{-1}$
рх	Cone angle width	Fixed	$AA1 = 80^{\circ}$
			$AA2 = 60^{\circ}$

	Parameter	Type of Parameter	Value
	Grain density	Fixed	$1000 kg m^{-3}$
loh, 1983)	Grain refractive index	Fixed	m = 1.88 + 0.71i
, ,	Ejection velocity: power index	Fixed	0.5
	Size distribution: β_{min}, β_{max}	Fixed	0.01, 1.3
	Size distribution: power index	Variable	-3.5
	Nucleus rotation period	Fixed	15 hr
	Time interval between positions	Variable	0.32 days
Pole po	sition: heliocentric longitude and latitude	Variable	(250°, 10°)
Activ	e areas location: longitude and latitude	Variable	$AA1 = (180^\circ, 80^\circ)$
			$AA2 = (0^\circ, -10^\circ)$
	Integration steps numbers: N_t	Variable	200
Number of	ejected particles in each integration step: N_p	Fixed	3000
	Reference ejection velocity: v_0	Variable	$500 ms^{-1}$
	Cone angle width	Fixed	$AA1 = 80^{\circ}$
			$AA2 = 60^{\circ}$

Parameter	Type of Parameter	Value
Grain density	Fixed	$1000 kg m^{-3}$
Grain refractive index	Fixed	m = 1.88 + 0.71i
Ejection velocity: power index	Fixed	0.5
Size distribution: β_{min}, β_{max}	Fixed	0.01, 1.3
Size distribution: power index	Variable	-3.5
vitt+2023) Nucleus rotation period	Fixed	15 hr
Time interval between positions	Variable	0.32 days
Pole position: heliocentric longitude and latitude	Variable	$(250^{\circ}, 10^{\circ})$
Active areas location: longitude and latitude	Variable	$AA1=(180^\circ,80^\circ)$
		$AA2=(0^\circ,-10^\circ)$
Integration steps numbers: N_t	Variable	200
Number of ejected particles in each integration step: N_p	Fixed	3000
Reference ejection velocity: v_0	Variable	$500 m s^{-1}$
Cone angle width	Fixed	$AA1 = 80^{\circ}$
		$AA2 = 60^{\circ}$

	Parameter	Type of Parameter	Value
	Grain density	Fixed	$1000 kg m^{-3}$
	Grain refractive index	Fixed	m = 1.88 + 0.71i
	Ejection velocity: power index	Fixed	0.5
	Size distribution: β_{min}, β_{max}	Fixed	0.01, 1.3
	Size distribution: power index	Variable	-3.5
	Nucleus rotation period	Fixed	15 hr
	Time interval between positions	Variable	0.32 days
Pole	position: heliocentric longitude and latitude	Variable	(250°, 10°)
Ac	tive areas location: longitude and latitude	Variable	$AA1=(180^\circ,80^\circ)$
			$AA2=(0^\circ,-10^\circ)$
	Integration steps numbers: N_t	Variable	200
Number	of ejected particles in each integration step: N_p	Fixed	3000
	Reference ejection velocity: v_0	Variable	$500 ms^{-1}$
	Cone angle width	Fixed	$AA1 = 80^{\circ}$
			$AA2 = 60^{\circ}$

Parameter	Type of Parameter	Value
Grain density	Fixed	$1000 kg m^{-3}$
Grain refractive index	Fixed	m = 1.88 + 0.71i
Ejection velocity: power index	Fixed	0.5
Size distribution: β_{min}, β_{max}	Fixed	0.01, 1.3
Size distribution: power index	Variable	-3.5
Nucleus rotation period	Fixed	15 hr
Time interval between positions	Variable	0.32 days
Pole position: heliocentric longitude and latitude	Variable	(250°, 10°)
Active areas location: longitude and latitude	Variable	$AA1=(180^\circ,80^\circ)$
		$AA2=(0^\circ,-10^\circ)$
Integration steps numbers: N_t	Variable	200
Number of ejected particles in each integration step: N_p	Fixed	3000
Reference ejection velocity: v_0	Variable	$500 ms^{-1}$
Cone angle width	Fixed	$AA1 = 80^{\circ}$
		$AA2 = 60^{\circ}$

Parameter	Type of Parameter	Value
Grain density	Fixed	$1000 kg m^{-3}$
Grain refractive index	Fixed	m = 1.88 + 0.71i
Ejection velocity: power index	Fixed	0.5
Size distribution: β_{min} , β_{max}	Fixed	0.01, 1.3
Size distribution: power index	Variable	-3.5
Nucleus rotation period	Fixed	15 hr
Time interval between positions	Variable	0.32 days
Pole position: heliocentric longitude and latitude	Variable	$(250^{\circ}, 10^{\circ})$
Active areas location: longitude and latitude	Variable	$AA1 = (180^\circ, 80^\circ)$
		$AA2 = (0^\circ, -10^\circ)$
Integration steps numbers: N_t	Variable	200
Number of ejected particles in each integration step: N_p	Fixed	3000
Reference ejection velocity: v_0	Variable	$500 ms^{-1}$
Cone angle width	Fixed	$AA1 = 80^{\circ}$
		$AA2 = 60^{\circ}$

	Parameter	Type of Parameter	Value
	Grain density	Fixed	$1000 kg m^{-3}$
	Grain refractive index	Fixed	m = 1.88 + 0.71i
	Ejection velocity: power index	Fixed	0.5
	Size distribution: β_{min}, β_{max}	Fixed	0.01, 1.3
	Size distribution: power index	Variable	-3.5
	Nucleus rotation period	Fixed	15 hr
	Time interval between positions	Variable	0.32 days
Pole po	osition: heliocentric longitude and latitude	Variable	$(250^{\circ}, 10^{\circ})$
Activ	ve areas location: longitude and latitude	Variable	$AA1 = (180^\circ, 80^\circ)$
			$AA2=(0^\circ,-10^\circ)$
	Integration steps numbers: N_t	Variable	200
Number of	f ejected particles in each integration step: N_p	Fixed	3000
Γ	Reference ejection velocity: v_0	Variable	$500 m s^{-1}$
	Cone angle width	Fixed	$AA1 = 80^{\circ}$
			$AA2 = 60^{\circ}$

Conclusiones

Conclusiones

- Un buen modelado, pueden proporcionar información significativa, incluso de la propia superficie del núcleo que no es directamente observable desde la Tierra cuando el cometa está activo.
- Con este programa, ahora se cuenta con una nueva herramienta para la investigación de cometas que permite inferir parámetros importantes y da respuestas a la actividad de cualquier cuerpo para la cual las observaciones de la coma están disponibles.
- El modelo numérico desarrollado, tanto en términos de opciones de implementación como de resultados obtenidos, está al nivel del de otros autores.
- Complementado con otra información, puede aproximarnos a un buen entendimiento del comportamiento cometario.

Conclusiones

- Un buen modelado, pueden proporcionar información significativa, incluso de la propia superficie del núcleo que no es directamente observable desde la Tierra cuando el cometa está activo.
- Con este programa, ahora se cuenta con una nueva herramienta para la investigación de cometas que permite inferir parámetros importantes y da respuestas a la actividad de cualquier cuerpo para la cual las observaciones de la coma están disponibles.
- El modelo numérico desarrollado, tanto en términos de opciones de implementación como de resultados obtenidos, está al nivel del de otros autores.
- Complementado con otra información, puede aproximarnos a un buen entendimiento del comportamiento cometario.

MODELADO CON ESTIMACIÓN APROPIADA DEL PERÍODO DE ROTACIÓN

¡GRACIAS!

FILTRO R

23/12/2021